Predicting Strategic Behavior from Free Text
نویسندگان
چکیده
منابع مشابه
Predicting Text Relevance from Sequential Reading Behavior
In this paper we show that it is possible to make good predictions of text relevance, from only features of conscious eye movements during reading. We pay special attention to the order in which the lines of text are read, and compute simple features of this sequence. Artificial neural networks are applied to classify the relevance of the read lines. The use of ensemble techniques creates stabl...
متن کاملDeep Learning for Predicting Human Strategic Behavior
Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant’s cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that ...
متن کاملPredicting Prosody from Text
In order to improve unlimited TTS, a framework to organize the multiple perceived units into discourse is proposed in [1]. To make an unlimited TTS system, we must transform the original text to the text with corresponding boundary breaks. So we describe how we predicate prosody from Text in this paper. We use the corpora with boundary breaks which follow the prosody framework. Then we use the ...
متن کاملPredicting Intonational Phrasing from Text
Determining the relationship between the intonational characteristics of an utterance and other features inferable from its text is important both for speech recognition and for speech synthesis. This work investigates the use of text analysis in predicting the location of intonational phrase boundaries in natural speech, through analyzing 298 utterances from the DARPA Air Travel Information Se...
متن کاملPredicting User Competence from Text
We explore the possibility of learning user competence from a text by using natural language processing and machine learning (ML) methods. In our context, competence is defined as the ability to identify the wildlife appearing in images and classifying into species correctly. We evaluate and compare the performance (regarding accuracy and Fmeasure) of the three ML methods, Naive Bayes (NB), Dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2020
ISSN: 1076-9757
DOI: 10.1613/jair.1.11849